Interplay between PDFs and new physics

A systematic study of new physics contaminations in PDF fits

Elie Hammou / 34th Rencontres de Blois

European Research Council
Established by the European Commission
Supervisor: Prof Maria Ubiali

Our group: PBSP

Physics Beyond the Standard Proton

- Led by Maria Ubiali
- Based In Cambridge
- Working on interpretation of LHC data
- Indirect search for heavy new physics
- Interplay of PDF and EFT

Background on Parton Distribution Functions

$\sigma=\hat{\sigma} \otimes f$

- PDFs: describe proton in terms of partonic content

[Ball et al., NNPDF4.0, 2109.02653]

Background on SMEFT

- Parametrisation of heavy new physics

$$
\mathscr{L}^{\mathrm{SMEFT}}=\mathscr{L}^{\mathrm{SM}}+\sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathscr{O}_{i}+\ldots
$$

- Dimension 6 operators with SM fields
- Model-independent
\Rightarrow Fit Wilson coefficients from data
- Tools such as SMEFiT, Fitmaker
$\frac{c_{i}}{\Lambda^{2}}\left[\mathrm{TeV}^{-2}\right]$

Problem: Can we mix them up?

Do we risk absorbing new physics signals in PDF fitting?

Motivation for concern:

- Both are fitted from data
- PDF parametrisation is very flexible
- LHC data shifts PDFs

[Ball et al., NNPDF4.0, 2109.02653]

Don't mix apples and oranges

Need robust framework to disentangle EFT and PDF signals

- Simultaneous fits:
- SIMUnet, [The top quark legacy of the LHC Run II for PDF and SMEFT analyses, 2303.06159]
- Conservative dataset:
- Prevent contamination

PDFs

Wilson coefficients (SMEFT)

Focus of the talk: Risk assessment

Do we risk absorbing new physics in PDF fitting?

Perform a "Contamination test":

- Produce pseudodata using SM PDFs and NP
- Fit PDFs from pseudodata assuming SM

Can we get "contaminated PDFs"?

New physics scenarios: $Z^{\prime} \quad M_{Z^{\prime}}=18.7 \mathrm{TeV}$

Generation of the pseudodata

$$
\mathscr{L}_{S M E F T}^{Z}=\mathscr{L}_{S M}-\frac{g_{Z}^{2}}{2 M_{Z}^{2}} J_{Y}^{\mu} J_{Y, \mu}
$$

$$
J_{Y}^{\mu}=\sum_{f} Y_{f} \bar{f}_{\gamma^{\mu}} f
$$

Impacts neutral current Drell-Yan processes

$$
p p \rightarrow l^{+} l^{-}
$$

New physics scenarios: Z

$$
M_{Z^{\prime}}=32.5 \mathrm{TeV}
$$

New physics scenarios: $W^{\prime} \quad M_{W^{\prime}}=13.8 \mathrm{TeV}$

Generation of the pseudodata

$$
\begin{gathered}
\mathscr{L}_{S M E F T}^{W^{\prime}}=\mathscr{L}_{S M}-\frac{g_{W^{\prime}}^{2}}{2 M_{W^{\prime}}^{2}} J_{L}^{a, \mu} J_{L, \mu}^{a} \\
J_{L}^{a, \mu}=\sum_{f_{L}} \bar{f}_{L} T^{a} \gamma^{\mu} f_{L}
\end{gathered}
$$

Impacts charged current Drell-Yan processes

$$
p p \rightarrow l^{-} \bar{\nu}
$$

Constraints from current data

- New physics scenarios compared to constraints at 95\% CL

PDF fitting: selection test

Do our contaminated datasets pass the selection criteria?

Selection test:

No impact on PDFs

Selection test:
\Rightarrow Included in PDF fit

PDFs contaminated

Impact of contamination: PDFs

Comparison between contaminated and Baseline PDFs

- Contaminated
\Rightarrow BSM Lagrangian
- Baseline
\Rightarrow SM Lagrangian

Impact of contamination: LHC predictions

Analysis of contaminated predictions for HL-LHC data

$$
p p \rightarrow W^{+} W^{-}
$$

- WW production
- Comparison between:
- Contaminated PDFs (red)
- Baseline PDFs (black)

What does it mean?

- Contamination effect
\Rightarrow Miss new physics (W' field)
\Rightarrow Introduce fake deviations in other sectors
- Need way to identify contamination
\Leftrightarrow Test on observable not included in PDFs fit
- Need way to prevent contamination
\Rightarrow Additional selection criteria?

Summary and outlook

- Discussed two new physics scenarios: Z^{\prime} and W^{\prime}. Both impact high-energy DrellYan
- Signs of W^{\prime} got fitted away in PDF parametrisation
\Rightarrow Missed new physics
\Rightarrow Introduced deviations where they are not present
- Need a robust disentangling method for a precision study
- Identify and prevent contamination

Thank you for your attention!

Extra slides

New physics scenarios: W^{\prime}

$$
M_{W^{\prime}}=10 \mathrm{TeV}
$$

$$
M_{W^{\prime}}=22.5 \mathrm{TeV}
$$

PDF fitting: selection criteria

Exclusion of incompatible datasets (NNPDF criteria)

Two criteria:

- χ^{2}-statistics: $\quad \chi^{2}=(\text { data }- \text { theory })^{T} \cdot V_{\text {cov }}^{-1} \cdot($ data - theory $)$
$-\frac{\chi^{2}}{n_{d a t}}>1.5 \rightarrow$ excluded
- n_{σ} standard deviation:

$$
n_{\sigma}>2
$$

excluded

$$
n_{\sigma}=\frac{\chi^{2}-1}{\sigma_{\chi^{2}}}
$$

List of deviations

	HL-LHC		Stat. improved	
Dataset	$\chi^{2} / n_{\text {dat }}$	n_{σ}	$\chi^{2} / n_{\text {dat }}$	n_{σ}
$W^{+} H$	1.17	0.41	1.77	1.97
$W^{-} H$	1.08	0.19	1.08	0.19
$W^{+} Z$	1.08	0.19	1.49	1.20
$W^{-} Z$	0.99	-0.03	1.02	0.05
$Z H$	1.19	0.44	1.67	1.58
$W^{+} W^{-}$	2.19	3.04	2.69	4.31
$\mathrm{VBF} \rightarrow \mathrm{H}$	0.70	-0.74	0.62	-0.90

Quarks PDF

