Interplay between PDFs and new physics

Elie Hammou / 34th Rencontres de Blois **Supervisor: Prof Maria Ubiali**

A systematic study of new physics contaminations in PDF fits

European Research Council

Established by the European Commission

Our group: PBSP Physics Beyond the Standard Proton

- Led by Maria Ubiali
- Based In Cambridge
- Working on interpretation of LHC data
 - Indirect search for heavy new physics
 - Interplay of PDF and EFT

- PDFs: describe proton in terms of partonic content
- Very important in hadron colliders
- Non-perturbative QCD

Fit functions from data

 NNPDF methodology: MC replica and NN parametrisation

[Ball et al., NNPDF4.0, 2109.02653]

Background on SMEFT

- Parametrisation of heavy new physics
- Dimension 6 operators with SM fields
- Model-independent

Fit Wilson coefficients from data

• Tools such as SMEFiT, Fitmaker

$$\frac{c_i}{\Lambda^2} [2$$

Problem: Can we mix them up? Do we risk absorbing new physics signals in PDF fitting?

Motivation for concern:

- Both are fitted from data
- PDF parametrisation is very flexible
- LHC data shifts PDFs

Don't mix apples and oranges Need robust framework to disentangle EFT and PDF signals

- Simultaneous fits:
 - SIMUnet, [The top quark] legacy of the LHC Run II for PDF and SMEFT analyses, 2303.06159]

- Conservative dataset:
 - **Prevent contamination**

PDFs

Wilson coefficients (SMEFT)

Focus of the talk: Risk assessment Do we risk absorbing new physics in PDF fitting?

Perform a "Contamination test":

- Produce pseudodata using SM PDFs and NP
- Fit PDFs from pseudodata assuming SM

Can we get "contaminated PDFs"?

New physics scenarios: Z'Generation of the pseudodata $rac{1}{5}$

$$\mathscr{L}_{SMEFT}^{Z'} = \mathscr{L}_{SM} - \frac{g_{Z'}^2}{2M_{Z'}^2} J^{\mu}_{Y} J_{Y,\mu}$$

$$J_Y^{\mu} = \sum_{f} Y_f \bar{f} \gamma^{\mu} f$$

Impacts neutral current Drell-Yan processes

$$pp \rightarrow l^+ l^-$$

New physics scenarios: WGeneration of the pseudodata

$$\mathscr{L}_{SMEFT}^{W'} = \mathscr{L}_{SM} - \frac{g_{W'}^2}{2M_{W'}^2} J_L^{a,\mu} J_{L,\mu}^a$$

$$J_L^{a,\mu} = \sum_{f_L} \bar{f}_L T^a \gamma^\mu f_L$$

Impacts charged current Drell-Yan processes

 $pp \rightarrow l^- \bar{\nu}$

Constraints from current data

3

2

1

-1

 \hat{Y} (×10⁴)

• New physics scenarios compared to constraints at 95% CL

 $Z^{'}$

PDF fitting: selection test Do our contaminated datasets pass the selection criteria?

Excluded from PDF fit

No impact on PDFs

Included in PDF fit

PDFs contaminated

Impact of contamination: PDFs Comparison between contaminated and Baseline PDFs

Contaminated
 BSM Lagrangian

- Baseline
 - SM Lagrangian

Impact of contamination: LHC predictions **Analysis of contaminated predictions for HL-LHC data**

$$pp \rightarrow W^+W^-$$

WW production

- Comparison between:
 - Contaminated PDFs (red)
 - Baseline PDFs (black)

What does it mean?

- Contamination effect
 - ➡ Miss new physics (W' field)
 - Introduce fake deviations in other sectors
- Need way to identify contamination
 - Test on observable not included in PDFs fit
- Need way to prevent contamination
 - Additional selection criteria?

Summary and outlook

- Yan
- Signs of W' got fitted away in PDF parametrisation
 - Missed new physics
 - Introduced deviations where they are not present
- Need a robust disentangling method for a precision study
 - Identify and prevent contamination

• Discussed two new physics scenarios: Z' and W'. Both impact high-energy Drell-

Thank you for your attention!

Extra slides

PDF fitting: selection criteria Exclusion of incompatible datasets (NNPDF criteria)

Two criteria:

• n_{σ} standard deviation:

$$(theory)^T \cdot V_{cov}^{-1} \cdot (data - theory)$$

$$n_{\sigma} = \frac{\chi^2 - 1}{\sigma_{\chi^2}}$$

List of deviations

	HL-LHC		Stat. improved	
Dataset	$\mid \chi^2/n_{ m dat}$	$ n_{\sigma}$	$\mid \chi^2/n_{ m dat}$	n_{σ}
W^+H	1.17	0.41	1.77	1.97
W^-H	1.08	0.19	1.08	0.19
W^+Z	1.08	0.19	1.49	1.20
W^-Z	0.99	-0.03	1.02	0.05
ZH	1.19	0.44	1.67	1.58
W^+W^-	2.19	3.04	2.69	4.31
$\mathrm{VBF} \to \mathrm{H}$	0.70	-0.74	0.62	-0.90

Quarks PDF

21