Hide and Seek: How PDFs can conceal **New Physics**

Elie Hammou / Brookhaven Forum 2023 **Supervisor: Prof Maria Ubiali**

A systematic study of new physics contaminations in PDF fits

European Research Council

Established by the European Commission

Our group: PBSP Physics Beyond the Standard Proton

- Led by Maria Ubiali
- Based In Cambridge
- Working on interpretation of LHC data
 - Indirect search for heavy new physics
 - Interplay of PDF and EFT

- PDFs: describe proton in terms of partonic content
- Indispensable at hadron colliders
- Non-perturbative QCD

Fitted from data

NNPDF methodology

[Ball et al., NNPDF4.0, 2109.02653]

Heavy New Physics: UV vs SMEFT

Integrating UV heavy fields out:

Dim 6 EFT operators with SM fields

- Advantages to choose BSM parameters: Predictions polynomial in Wilson coefficients c_i
- Model-independent:

Fit Wilson coefficients from data

Problem: Can New Physics contaminate PDFs? Do we risk absorbing new physics signals in PDF fitting?

Motivation for concern:

- Neither is predicted by theory
- PDF parametrisation is very flexible
- LHC data shifts PDFs

Focus of the talk: Risk assessment Methodology

Perform a "Contamination test":

- 1. Produce pseudodata with BSM physics
- 2. Fit PDFs from pseudodata assuming SM
- 3. Compare results with baseline PDFs

If contaminated PDFs incompatible with baseline:

PDFs have absorbed new physics

[Hammou, Kassabov, Madigan, Mangano, Mantani, Moore, Morales Alvarado and Ubiali, 2307.10370]

New physics scenarios: Z'Generation of the pseudodata $rac{1}{5}$

$$\mathscr{L}_{SMEFT}^{Z'} = \mathscr{L}_{SM} - \frac{g_{Z'}^2}{2M_{Z'}^2} J^{\mu}_{Y} J_{Y,\mu}$$

$$J_Y^{\mu} = \sum_{f} Y_f \bar{f} \gamma^{\mu} f$$

Impacts neutral current Drell-Yan processes

$$p\bar{p} \rightarrow l^+ l^-$$

New physics scenarios: WGeneration of the pseudodata

$$\mathscr{L}_{SMEFT}^{W'} = \mathscr{L}_{SM} - \frac{g_{W'}^2}{2M_{W'}^2} J_L^{a,\mu} J_{L,\mu}^a$$

$$J_L^{a,\mu} = \sum_{f_L} \bar{f}_L T^a \gamma^\mu f_L$$

Impacts charged current Drell-Yan processes

 $pp \rightarrow l^- \bar{\nu}$

Constraints from current data

• New physics scenarios compared to constraints at 95% CL

1

-1

 \hat{Y} (×10⁴)

3

 $Z^{'}$

PDF fitting: selection test Do our contaminated datasets pass the selection criteria?

Excluded from PDF fit

No impact on PDFs

Included in PDF fit

PDFs contaminated

Impact of contamination: missing new physics **Comparison between contaminated and Baseline PDFs**

Comparing:

- "Contaminated PDFs" : BSM 1.05 data
- **Baseline PDFs: SM data**

Incompatible...

Contamination occurred

Risk of missing new physics

baseline

Ratio to

Impact of contamination: fake deviations **Analysis of contaminated predictions for HL-LHC data**

$$p\bar{p} \rightarrow W^+W^-$$

Comparison of SM prediction with:

- Contaminated PDFs (red)
- Baseline PDFs (black)

Fake deviation induced by PDFs

Identifying contamination Study of ratio of observable with same parton channels WW / NC DY

Taking ratio of:

• $p\bar{p} \rightarrow W^+W^-$

•
$$p\bar{p} \rightarrow l^+ l^-$$

Suppresses impact of PDFs Deviation observed:

New physics in the data

Preventing contamination Adding low-energy dataset in the large-x region

Excessive antiquark PDF flexibility in largex region:

Allows contamination

Including low-energy large-x data:

- Constraint large-x region
- Safe from BSM contamination

Data-Theory comparison

		Baseline	Contaminated	
	Data points (ndata)	χ^2 /ndata χ^2 /ndata		
NuSea (2001)	15	1.350	1.823	
NuSea (2003)	89	0.8017	0.9769	
SeaQuest	6	0.4192	1.034	
D0 detector	9	2.385 3.046		
Total	119	0.9699	1.239	

Summary and outlook

- Signs of W' got fitted away in PDF parametrisation
 - Missed new physics
 - Introduced fake deviations
- Solution to prevent contamination:
 - Consider observable ratios
 - Add large-x low-energy datasets into fits

• Discussed two new physics scenarios: Z' and W'. Both impact high-energy Drell-Yan

Feel free to contact me at: eh651@cam.ac.uk

Thank you for your attention!

Extra slides

Don't mix apples and oranges Need robust framework to disentangle EFT and PDF signals

- Simultaneous fits:
 - SIMUnet, [The top quark] legacy of the LHC Run II for PDF and SMEFT analyses, 2303.06159]

- Conservative dataset:
 - **Prevent contamination**

PDFs

Wilson coefficients (SMEFT)

PDF fitting: selection criteria Exclusion of incompatible datasets (NNPDF criteria)

Two criteria:

• n_{σ} standard deviation:

$$(theory)^T \cdot V_{cov}^{-1} \cdot (data - theory)$$

$$n_{\sigma} = \frac{\chi^2 - 1}{\sigma_{\chi^2}}$$

Quarks PDF

21

List of deviations

	HL-LHC		Stat. improved	
Dataset	$\mid \chi^2/n_{ m dat}$	$\mid n_{\sigma}$	$\mid \chi^2/n_{ m dat}$	n_{σ}
W^+H	1.17	0.41	1.77	1.97
W^-H	1.08	0.19	1.08	0.19
W^+Z	1.08	0.19	1.49	1.20
W^-Z	0.99	-0.03	1.02	0.05
ZH	1.19	0.44	1.67	1.58
W^+W^-	2.19	3.04	2.69	4.31
$\mathrm{VBF} \to \mathrm{H}$	0.70	-0.74	0.62	-0.90