How to fit PDFs in the presence of new physics?

A systematic study of the interplay of PDFs and BSM signals in global fits

[PBSP, 2307.10370, JHEP]

[PBSP, 2402.03308]

[Hammou et Ubiali, forthcoming]

Elie Hammou, University of Cambridge Rencontres de Moriond QCD 2024

European Research Council

Established by the European Commission

PBSP 8

Our group: PBSP Physics Beyond the Standard Proton

- Led by Maria Ubiali
- Based in Cambridge
- Focus on PDF and EFT interplay
 - Indirect search for heavy new physics
 - Investigate robust fitting methods

Heavy New Physics: from UV to SMEFT

Integrate heavy fields out:

Obtain model independent Lagrangian:

 $\mathcal{L}^{UV} = \mathcal{L}^{SM} + \mathcal{L}^{Heavy}$

• Wilson coefficients fittable from data: C_i Λ^2

- describe proton in terms of partonic \bullet content
- f(x, Q)
- x dependance: non-perturbative QCD

Fitted from data

Using NNPDF methodology

[Ball et al., NNPDF4.0, 2109.02653]

Fitting PDF from data The dataset used by NNPDF

[Ball et al., NNPDF4.0, 2109.02653]

Evolution of the dataset through time: Moved toward higher energies • 30% is LHC data More to come with HL-LHC run

Discrepancy between low and high-energy data fits Comparison of full data and no LHC PDF fit

Risk of absorbing new physics in PDFs? Methodology for risk assessment

Perform a "Contamination test":

- 1. Choose a BSM model
- 2. Produce BSM pseudodata
- 3. Fit PDFs from pseudodata assuming SM
- Compare results with baseline PDFs (no BSM physics)

Contamination criteria:

- Incompatible with baseline
- Fit quality does not deteriorate

$$\Rightarrow \chi^2 = (Dat - Th)^{\mathsf{T}} \cdot \Sigma_{cov}^{-1} \cdot (Dat - Th)$$

PDF contamination:

PDFs have absorbed new physics signals

New physics scenario: W'Generation of the pseudodata

Impact of contamination: missing new physics **Comparison between contaminated and Baseline PDFs**

Impact of contamination: fake deviations

SM predictions with:

- Contaminated PDFs (red)
- Baseline PDFs (black)

Fake deviation in other sectors

Also seen in:

WH, WZ, ZH production

HL-LHC Projections

Synergy of high and low-energy data Adding low-energy dataset constraining the large-x region

Excessive antiquark PDF flexibility in large-x region:

Accommodates real data and BSM pseudodata

Allows contamination

Including low-energy large-x data:

- Constraint large-x region
- Safe from BSM contamination

Impact of Forward Physics Facility Projection data from FASER, FASER2, SND and AdvSND,

HL-LHC HM DY 14 TeV - charged current - electron channel

Simultaneous fit of PDF and new physics Presentation of the tool: SIMUnet

[Iranipour et Ubiali, 2201.07240]

SMEFT Fit PDF and new physics

Summary and outlook

- PDF contamination: BSM model dependent
 - Not seen for Z'
 - Ongoing study for gluon sector
- Signs of W' got fitted away in PDF parametrisation
 - Missed new physics
 - Introduced fake deviations in other sectors
- Solution to prevent contamination:
 - Add precise large-x low-energy datasets into fits: FTDY, FPF, EIC... (forthcoming)
 - Fitting simultaneously PDF and new physics: SIMUnet tool available

Extra slides

New physics scenarios: Z'Generation of the pseudodata $rac{1}{5}$

$$\mathscr{L}_{SMEFT}^{Z'} = \mathscr{L}_{SM} - \frac{g_{Z'}^2}{2M_{Z'}^2} J^{\mu}_{Y} J_{Y,\mu}$$

$$J_Y^{\mu} = \sum_{f} Y_f \bar{f} \gamma^{\mu} f$$

Impacts neutral current Drell-Yan processes

$$p\bar{p} \rightarrow l^+ l^-$$

Constraints from current data

• New physics scenarios compared to constraints at 95% CL

1

-1

 \hat{Y} (×10⁴)

3

 $Z^{'}$

PDF fitting: selection criteria Exclusion of incompatible datasets (NNPDF criteria)

Two criteria:

• n_{σ} standard deviation:

$$(theory)^T \cdot V_{cov}^{-1} \cdot (data - theory)$$

$$n_{\sigma} = \frac{\chi^2 - 1}{\sigma_{\chi^2}}$$

PDF fitting: selection test Do our contaminated datasets pass the selection criteria?

Excluded from PDF fit

No impact on PDFs

Included in PDF fit

PDFs contaminated

Quarks PDF

23

List of deviations

	HL-LHC		Stat. improved	
Dataset	$\mid \chi^2/n_{ m dat}$	$\mid n_{\sigma}$	$\mid \chi^2/n_{ m dat}$	n_{σ}
W^+H	1.17	0.41	1.77	1.97
W^-H	1.08	0.19	1.08	0.19
W^+Z	1.08	0.19	1.49	1.20
W^-Z	0.99	-0.03	1.02	0.05
ZH	1.19	0.44	1.67	1.58
W^+W^-	2.19	3.04	2.69	4.31
$\mathrm{VBF} \to \mathrm{H}$	0.70	-0.74	0.62	-0.90