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The PBSP adventure

From October 2020: Physics beyond the Standard Proton







History of the Universe
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Different scales: different rules

Example of speed

Low speed . Average speed
(microscopic) | (mesoscopic, i.e. us)

High speed
(macroscopic)




(Please don't ask me any
hard question about this...)

The large scales

Black holes and General relativity

Center of our Galaxy: Black Hole




The large scales

Missing mass: is there Dark Matter?

Extra mass not
radiating any light:

I "
Observed Dark matter

|

Extra mass from

.
\ u ar 1[ matter

Radius . Price | Dark energy???

About 5 times more dark matter
than regular matter...

Expected from
stars+gas

Rotation (Circular) Velocity

Universe expansion: missing energy




Our scale

Our world:

* Flat spacetime

 Matter continuous (TBC

e \isible interactions:
o (Gravitation

O Electromagnetism




Our scale

Electro- ‘ magnetism
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The small scales

The substructure of the matter
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Quantum physics
Is God playing with dice?

Quantum Mechanics:

Double slit experiment (Young)

* Confusing laws

™~ screen * Duality wave-particle
Electrons \\ sy
N * Probabilistic (not
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. Can we describe the
i small scales with a

physical model?




A model of
elementary particles
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The theoretical physics perspective

Theoretical physicists are... nerds

They like math, order and simplicity
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A model of elementary pizza constituents

A | » Pepperoni
e Elementary constituents:
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Dough: composite object,
difficult without further inspection

Tomato sauce keeps it together: interactions

Are all ingredients visible?
Maybe we are missing elements! (Dark basil?)




The ingredients of the Universe

Assumptions: Nature is ultimately described by microscopic particles

Composite: like the dough!

O Proton Neutron
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Who ordered these?

We kept looking and found
new matter constituents

They are heavy and unstable

electron
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electron antineutrino

muon

muon neutrino

matter (fermions)

t 4
B
BRI

top quark

quarks

7))

c

®)

afpd

Q.
Q
cam?

electron neutrino muon neutrino tau neutrino
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The fundamental interactions

gauge bosons
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The Standard Model of particle physics

The most successful theory in History!!

Unifies the description of 3 fundamental forces

But... | think we forgot something:
the model explodes at high energy!
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The Higgs Boson

It Is a bit complicated, but... the EW interactions do not allow masses

But we know that masses are there!

4 ™
This costs too much
energy! | think I'll

NS

hang out down there.
. J

Im ¢

We introduce the Higgs field:

Particles interacting with it acquire mass

S . N www.sciencenews.org
MAGAZINE OF THE SOCIETY FOR SCIENCE & THE PUBLIC = JULY 28, 2012

Finally

High-energy collisions
pop particle from its
mass-giving field




?

What about gravi

Really difficult to put together with the SM

missing a quantum theory!



Is the SM the final theory?

The SM is incredibly good...

but physicists believe there must be something else...

Composition of the Universe

Dark matter Dark
27% matter Ordinary

- ) 3

5% Ordinary matter
4% H and He
Dark energy
68%

< 1% Stars
< 1% Other

\ \ ft\ R
b ‘\

Dark
energy
68%

How can we investigate these problems?

Hint: Einstein taught us that E = mc?...



CMS Experiment at the LHC, CERN
Data recorded: 2016-May-07 02:15:29.192000 GMT |
Run /Event / LS: 272775 / 36556333 / 49 ) ’ S
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The Large Hadron Collider



The Instruments of particle physics

Looking into the smallest constituents of the Universe

Atoms’ The quarks that make
nucleus is up protons are 10000
NUCLEUS w PROTON 10000 smaller than the
NEUTRON |
smaller than proton!
— ELECTRON atom itself
The historg of the Living world What kind of

can be summarized as the : d
elaboration of ever more pevfect microscope ao
eyes within a cosmos in which we need to

there s always something more

. observe nuclear
o be seewn.

and subnuclear

Pierre Theilhard de Chardin pa rticles?
(The Phenomenon of Man 1955)




The Large Hadron Collider

@CERN

® 15 miles ring under
the French-Swiss
border.

® 2 proton beams
accelerated at almost
the speed of light.

ASUISSE
S RANCH -
.’, . i

® 4 huge detectors to
capture the outcome
of proton collisions!

LHC 27+







erimental events at the LHC

CMS Experiment at the LHC, CERN A ~
Data recorded: 2016-Aug-15 01:00:30.361728 GMT ~
Run / Event / LS: 278822 / 837399836 / 484




Theoretical predictions at the LHC

/ Z,W\ The structure of the proton in terms of
7.W its elementary constituents is the

other crucial input to any theoretical
porediction for the LHC

What's the probability that a given
constituent carrying a fraction x; of the
proton’s velocity smashes against
another constituent carrying a fraction
x2 of the other proton’s velocity at the
time of the collision?




An example: the Higgs discovery

An example of signal

| | I | | | | | I I | | | | I I I | | | | | | I | |
Vs =7 TeV j Ldt=0.021b " Apr 18, 2011

Higgs production Higgs decay to photons
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Higgs boson: a portal to new physics

From a theoretical point of view, it The tate of our universe is linked with the
would be natural to have an extendea poroperties of the Higgs: are we going to
Higgs sector and unveil new quantum-tunnel into a completely different
fundamental symmetries universe?

Trans-Plancki
Higgs field ¥alue

/

Our Universe
as we see now

Standard Model
Prediction
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New Physics where are thou?



Direct searches Indirect searches

Theory

Uranus
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Neptune
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A mathematical bridge to new physics

current measurements

Even if new physics, new particles were living at an energy scale

that we cannot reach at experiments in the next 100 years, there |

a mathematical method to see the effects that these heavy partic
have at the energy that is currently explored at CERN.

future measurements



A mathematical bridge to new physics
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If we observe a deviation patter between theoretical predictions
and the experimental data that can be interpreted in terms of
something that lives at high energy that we still cannot reach, then
it means that we have indirectly discovered new physics.






Al to the rescue!

We see Al having more and more
impact In science and society

Physics Is not the exception!

But ... what 1s Al!

]

Machine Learning




Al, and ML, and so forth ...

Terms are often used interchangeably

Artificial intelligence (Al): enable
problem solving in machines

Machine learning (ML): make machines
earn without explicit programming

Deep learning (DL): neural networks




ML in all shapes and forms

Reinforcement learning

| | . o learn
Supervised learning Semi-supervised learning







ML In all shapes and forms

A

Unsupervised learning




ML In all shapes and forms
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- ) You
M L I n a I I prepare a ML introduction for a pint of science session

ChatGPT
Absolutely, here's a draft for an introduction to machine learning that you can use for a "Pint of Science

n

session—a casual setting where the audience is eager to learn something new while enjoying their

beverages:

Introduction to Machine Learning: Unraveling the Magic Behind Al

Good evening, everyone!

As we settle in with our pints tonight, let's dive into a topic that's as buzzing as the atmosphere in this
room—Machine Learning. It's a term that pops up everywhere these days, from your smartphone’s
camera and your favorite streaming service's recommendations to more critical uses like healthcare

diagnostics and self-driving cars. But what exactly is machine learning, and why is it so revolutionary?

What is Machine Learning?

Imagine teaching your computer to spot the difference between an ale and a lager just by showing it
thousands of examples. That's somewhat similar to how machine learning works. It's a branch of

artificial intelligence that teaches computers to think in a way that is similar to how humans learn,

gradually improving their accuracy and decis/ J mnaking without being explicitly programmed to do so.
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A ML algorithm

You want to find your favourite beer
(Mmaximise appreciation)

|. BEvaluate how good the beer you took was

2. Determine what would make the beer better
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3. Update your beer preference

'terate

features:
type of beer, -

lc/vol, price,
alc/vol, price, _

= appreciation



You want to find y
(Maximise appreci

. Bvaluate how go

2. Determine what

3. Update your be
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A ML algorithm

nature > nature communications > articles > article

Article | Open access | Published: 26 March 2024

Predicting and improving complex beer flavor through
machine learning

Michiel Schreurs, Supinya Piampongsant, Miguel Roncoroni, Lloyd Cool, Beatriz Herrera-Malaver,

Christophe Vanderaa, Florian A. TheBeling, tukasz Kreft, Alexander Botzki, Philippe Malcorps, Luk

Daenen, Tom Wenseleers & Kevin J. Verstrepen &

Nature Communications 15, Article number: 2368 (2024) | Cite this article

62k Accesses | 869 Altmetric | Metrics

Abstract

The perception and appreciation of food flavor depends on many interacting chemical
compounds and external factors, and therefore proves challenging to understand and

predict. Here, we combine extensive chemical and sensory analyses of 250 different beers to

U




ML can solve difficult problems

Muftin or Chihuahua? (Classification task) ML gains traction in fundamental physics!

literature (‘machine learning' or 'Al') in hep-th

Date of paper

1985 2024




ML for jet tagging

Jet: collimated shower of particles In
the detector

Tagging: gluon, light quark, bottom, top?

2 million simulated jet events
200 particles per jet

3 features per particle

ATLAS . ..

ML to the rescue .. EXPERIMENT  Ziot: 474587238 o




ML to model the proton structure

Vs=13TeV |y[<2.5

We can explore the proton with deep learning
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The future of ML and physics

ML intelligence has caught up with biological intelligence

102~ Are the problems too hard to solve!
10 Can machines help us be better
: DNy physicists?
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M. D. Schwartz, 741-642, NRP (2022)




Conclusions

Physics describes phenomena across different scales
The SM is good, but 1t Is not the whole story ...
Physics in the SM and beyond Is tested to unprecedented accuracy at the [HC

ML 1s helping to push the boundaries of our understanding of fundamental physics!

'Great discoveries, which seem to mark the end of a story, mark in
fact the beginning of a new, more extraordinary one"

G. llloupoulos






The Higgs Boson
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Known physics s . & Unknown physics

: Neutrino physics

Flavour physicses
» zt‘“

Hidden Sector
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